People of Helpful Engineering: Dr. Jocelyn Songer, MakerMask Founder

Researching reusable mask designs and materials in order to inform and unite a global community of local mask makers.

Written by: Sophia Li

Can you give us a bit of background on who you are and how your background prepared you to join Helpful Engineering and the creation of the Cloth Mask Project?

I’m a biomedical engineer, a researcher, and a scientist. I got my B.S. and Masters in biomedical engineering, with a focus on electrical engineering and medical devices. I’ve always been fascinated with how the brain can interface with electronics. So I got a Ph.D. in health sciences and technology at MIT and Harvard. Unfortunately, during my postdoc and junior faculty position I developed occupational asthma. I was literally allergic to my job, and all of the fuzzy furry critters in the research facility… 

Occupational asthma is what bumped me off the traditional academic track and gave me my first real insight into N-95s and masks, not just as a first responder (I also used to be an EMT) – but I because I had to get fit for an N-95 because I was allergic to the particles in my airspace. 

Eventually, my pulmonologist told me that I had to make a choice: I could either keep breathing or I could keep my job. I did everything I could to try to keep my job, but it turns out it’s not really a choice. Breathing isn’t optional. So I left my faculty position and backpacked the Appalachian Trail to try and get my health back. When I was in the backcountry dealing with forest fire smoke, I could not go out and buy a mask. That gave me this really interesting perspective, and meant I already had real-world experience making masks on the fly before COVID-19.

It’s not a traditional trajectory. But in a strange way, all of these different components of my life all became relevant in ways that I never would have imagined. My asthma suddenly meant that I had a decade of experience thinking about masks, particles, and respiratory health.

Through Helpful Engineering we created something bigger and reached more people.

How and when did you join Helpful Engineering?

I joined Helpful Engineering on March 11th. I’d finished a literature review, preliminary safety analysis, had tested half a dozen prototypes and was making them for my family. However, I wanted to make sure that it wasn’t just my family that benefited because we had come up with a solution that we thought could help more people. Through Helpful Engineering we created something bigger and reached more people. I shared the ideas, designs, and the research that I had done on masks with a bigger audience. Now, through MakerMask, we are able to share information about masks and mask designs with people – wherever they are.

When did you start looking at the specific masks design processes?

I started looking at the nitty-gritty parts of it in 2010 because that’s when my asthma was really bad. The masks I was using, N-95s, didn’t protect from everything, only 95%. So I started looking into the research of particle sizes, distribution, and airflow and looking into different masks and mask types. Besides, the N-95s I had to wear for work were not the most comfortable things in the world. I hated them. By 2016, I had gone through the research on all the commercially available reusable masks, and I have carried them with me ever since. 

Zooming up to Covid-19, I went to a neuromodulation conference in Las Vegas in January, and by the time I got back, people were already having trouble getting masks. So, I reviewed all the current literature in terms of what kinds of improvised, hand-made face masks you could create. It was pretty thin, focused on cotton masks, and there was only one pattern that the CDC directed everyone towards. One of the challenges is that a lot of the information on commercially available masks is stuck behind paywalls because it’s patented, trade-secret, and not generally available to the public.

What does the day-to-day work on the Fabric Mask Project look like?

It’s whatever needs to be done. It’s grown and evolved a lot. We spent a fair amount of time doing research still and moving things quickly. We worked with the MakerMask team and the group chat at Helpful. When I’m lucky I get to make a few masks for additional prototypes and work on testing, working on protocols and getting samples prepared to send out. Designing for the real world is different than designing for theory. I also spend a lot of time translating the research and science into information that can be understood by people who aren’t in those fields and spreading information to the people who can use it.

The challenges and consequences of not having the infrastructure fully developed before this pandemic made a lot of us realize that as we move forward, we want to be better prepared.

What were some of the greatest challenges you faced when developing the Fabric Mask Project?

You have to have more than a good design and a good idea. You have to have good protocols and practices and focus on usability and human factors. You can have the best mask design in the world but if people aren’t willing to wear it, or if it’s uncomfortable, then people aren’t going to use it. Just like in backpacking, emergency equipment is only good if you have it with you, if you know how to use it correctly, and if you’re willing to use it. Another challenge is reproducibility and sourcing materials. Everyone talks about materials differently so how you actually make it so that the materials can be identified by people in the field and that the end results can be reproducible. 

It’s been absolutely incredible to see the number of people who dropped everything in March to do what they could on all of these different projects to make a difference for the world. However, now that we’re not in the first few months, we’re figuring out how to balance our lives and how to keep the information out there and improve designs. The challenges and consequences of not having the infrastructure fully developed before this pandemic made a lot of us realize that as we move forward, we want to be better prepared. We don’t want the research, education, or testing, designing, and improving things to stop. So figuring out how to continue moving forward in sustainable ways is definitely a big challenge.

How do you see the MakerMask organization growing in the future?

We are working on better, more sustainable organization, structures, collaborations, and communications across all of the groups that are working on similar projects. We are better together. And if we can make the communications work across all of the groups who are working on projects then that would allow us to work more efficiently and effectively. 

However, there is a brick wall of reality at some point that doesn’t allow us to get all of these things done without paying employees. Part of sustainability is employment, especially in areas like the area I live in where there are not a lot of jobs. Maintaining progress with 100% volunteer-based groups spending 100% of their time on these projects isn’t going to work long term. It would be lovely to see some of these organizations become sustainable and able to create jobs. Most people can’t afford to have a full-time volunteer position. It’s not a popular topic of conversation in these volunteer efforts, but money is jobs is life.

We were able to upcycle around 50,000 bags and get them made into masks.

Over the past few months do you have any stories from various local mask production efforts that particularly inspire/stick out to you?

All of them. It has been amazing to see so many people around the globe come together for these mask making efforts. I have a local makerspace here in Orange Massachusetts who has made a couple thousand masks and is working on sustainable efforts to make masks and get them out into the community. Out on the other coast, the Distill My Heart project got a few thousand masks out to underserved communities in Oakland California. 

MakerMask has been going with water-resistant designs with nonwoven polypropylene. We asked for donations of materials and a whole bunch of companies like QVC, Hollister, and Meetings.net. A lot of groups had spunbond nonwoven polypropylene bags that we were able to upcycle and save from the dump. We were able to upcycle around 50,000 bags and get them made into masks. 

Seeing the different translations of the information, MakerMask has been translated into 8 languages that I know of, and seeing the global impact of the descendants of the information and materials has been really cool. Just seeing everyone come together and stepping up to do everything they can to help has been amazing.

Is there anything else you would like to add?

I think the big thing is just thank you to every single person who has responded to the pandemic. There are a few subsets of people who get a lot of credit and recognition for their work and efforts but it really has been a global effort: people at home making a mask, people who make bags with materials for others to use, people who’ve donated materials, people who shipped them, and people who kept showing up to work even though the systems weren’t prioritizing their safety so that the rest of us could keep eating and living. Thank you to everybody who is doing what they can and contributing in the ways that they can. 

And also remember that we tend to hear only a small subset of voices in the news and media. However, there are a lot of underserved communities and we don’t hear their stories. It’s easy for people to think that problems are solved because they are solved in the places on the big screens. But we should all seek to listen to voices that aren’t a part of our day to day. There a lot of communities that still don’t have access to supplies, masks, information, materials, and the triage of which communities get served first is very real. This is something we should all get better at thinking about.

Learn More About this Project

Project update: https://helpfulengineering.org/projects-news/project-update-maker-mask/


The MakerMask.org team is currently seeking collaborators and introductions to continue driving these efforts forward.

If you have access to test facilities, materials testing resources you’d like to donate, or interest in reviewing mask sciencefor public use, please contact Dr. Songer and her team at [email protected].

Want to volunteer? Contact the project through the Helpful Engineering Slack: #project-fabric-mask

Contact Dr. Songer: [email protected]

See the project website: www.makermask.org

See mask designs: www.makermask.org

The designs in this article are presented As-Is. The goal is to present designs that can foster further discussion and be utilized in countries that permit this product. These are not finalized designs and do not represent certification from any country. You accept responsibility and release Helpful Engineering from liability for the manufacture or use of this product. This design was created in response to the announcement on March 10, 2020, from the HHS.  Secretary of the Department of Health and Human Services (HHS) who issued a declaration pursuant to the Public Readiness and Emergency Preparedness (PREP) Act

Link to Prep act. :https://www.phe.gov/Preparedness/legal/prepact/Pages/default.aspx


ALL WARRANTIES OF ANY KIND WHATSOEVER, EXPRESS, IMPLIED AND STATUTORY, ARE HEREBY DISCLAIMED. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. THIS DEVICE (INCLUDING ANY ACCESSORIES AND COMPONENTS) IS PRESENTED ‘AS IS.’

Related posts

Waste as a Resource: Charting the Journey of Plastic into Roads

Photo by Nareeta Martin on Unsplash

Plastic waste, omnipresent and seemingly immortal, pervades every corner of our planet. Once celebrated as the marvel of modern innovation, it now stands as a monument to our unchecked consumption. However, the tide is turning. From waste emerges an unexpected solution: using plastic waste in road construction.

The basic premise revolves around using plastic waste as a partial substitute for bitumen in roads. But how is this concept fairing on the ground? Let’s delve into five case studies from around the world:

India

Perhaps one of the earliest adopters of this method, India has paved thousands of kilometers of roads using plastic waste. The southern city of Chennai has been at the forefront. Their approach involves shredding the plastic to a specific size before mixing it with bitumen.

Learnings: The roads demonstrate increased resilience, especially during the monsoons. However, the importance of maintaining a consistent plastic size was a significant lesson, ensuring even distribution and longevity.

The Netherlands

This European nation took a modular approach. They introduced plastic road surfaces as pre-fabricated blocks, making installation and maintenance more manageable.

Learnings: The modular nature allows for quicker repair and replacement. Moreover, these blocks, when worn out, can be recycled, further pushing the sustainability envelope.

South Africa

Here, the approach was more community-centric. By involving local communities in plastic collection, not only were roads built, but jobs were also created.

Learnings: Beyond just infrastructure development, the project showcased how environmental solutions could have socio-economic benefits. The community ownership also ensured consistent plastic waste supply and road maintenance.

Australia

Down under, they embarked on a pilot project in Melbourne by using a mix of recycled plastics equivalent to plastics from over 3 million plastic bags, along with glass and toners from used print cartridges.

Learnings: The diversity in the type of plastics used provided a more comprehensive blueprint for cities worldwide. It emphasized the need for rigorous testing to determine the right mix and highlighted the potential to incorporate other recyclable materials.

United Kingdom

The UK’s approach was heavily research-driven. They launched trials in Cumbria to understand the long-term effects of plastic roads.

Learnings: The UK’s focus on research underscored the importance of longitudinal studies. While immediate benefits are evident, understanding the environmental and structural impact over years or decades is crucial for widespread adoption.

While these successes chart a hopeful course, the journey of integrating plastic waste into roads is not without its challenges:

  • Type of Plastic: Not all plastics are suited for road construction. This necessitates thorough segregation and compatibility checks.
  • Environmental Impact: There’s a risk of microplastics being released into the environment as roads wear down.
  • Health Concerns: Toxic fumes released during the melting process could pose health risks to workers and nearby communities.
  • Durability and Performance: The long-term performance of plastic roads in different conditions remains a topic of study.
  • Recycling Limitations: Some plastics lose their structural integrity after being recycled multiple times, impacting road longevity.
  • End-of-Life Management: The disposal of worn-out plastic roads without causing environmental harm is an unresolved challenge.
  • Economic Viability: Balancing the costs of treating and integrating plastic can be a hurdle.
  • Public Perception and Acceptance: Garnering public support and addressing concerns are essential for this initiative’s success.
  • Regulatory and Standards Development: The absence of standardized guidelines can complicate the construction process.
  • Supply Chain Challenges: Ensuring a consistent supply of suitable plastic waste, especially in less urbanized regions, can be challenging.

These examples, spread across different continents, highlight the adaptability and potential of integrating plastic waste into road construction. But it’s more than just a technical solution; it’s a paradigm shift. The message is clear: what we deem ‘waste’ today could be the ‘resource’ of tomorrow.

Each case study, with its unique approach and lessons, illustrates the significance of context. There’s no one-size-fits-all solution, but the underlying theme remains consistent — innovation, adaptability, and sustainability are key.

As we reflect on these global efforts, it becomes evident that the journey of plastic waste from being discarded to paving our roads is a testament to human ingenuity and resilience. Through these case studies, we discover myriad ways to reimagine waste, reshape infrastructure, and redefine the future. It’s a potent reminder that innovation emerges from challenges, and with commitment and vision, the path to change is always within reach.


Waste as a Resource: Charting the Journey of Plastic into Roads was originally published in Helpful Engineering on Medium, where people are continuing the conversation by highlighting and responding to this story.

Akon: An Odyssey of Light and Empowerment

Photo by Andreas Gücklhorn on Unsplash

Akon and Andy Rabens Pose For Photos with Entrepreneurs

In the sprawling expanses of Africa, as twilight descends, a new beacon of hope emerges. Not from global energy moguls or international benefactors, but from the pulsating world of music. At the helm? Akon. Once a maestro of chart-topping hits, he’s now orchestrating a different kind of rhythm: a rhythm of transformation.

Much of Africa’s tale has been shadowed by the absence of dependable electricity. Remote hamlets plunged into twilight, their only respite being the toxic fumes of kerosene lamps. But with Senegalese roots grounding him, Akon envisioned a brighter narrative.

Solar Embrace

Treading into the vast potential of the continent, Akon’s endeavor was nothing short of audacious. His ‘Akon Lighting Africa’ initiative, set in motion in 2014, sought to electrify remote corners across 25 nations. Aiming to impact a staggering 600 million lives, it was a symphony of ambition and altruism.

Central to this narrative was the sun. Africa, eternally kissed by sunlight, had its potent energy often overlooked. Akon and his team sought to capture this perennial force. Solar panels, once mere passive structures, were transformed into catalysts for change.

They bypassed the need for expansive infrastructures typically associated with traditional power. By decentralizing energy, Akon’s approach empowered communities at a granular level. Each village, each home, could become a fortress of self-reliance. This isn’t just electrification; it’s emancipation.

Empowering the Grassroots

A critical facet of Akon’s strategy was its deep-rooted commitment to nurturing local talent. This wasn’t a superficial transplantation of Western technology. Instead, a robust drive was undertaken to train local engineers and budding entrepreneurs.

By 2021, a formidable 5,000 individuals had been molded, ensuring that the projects didn’t just illuminate, but also invigorated. A local with the expertise to manage these solar setups ensured continuity. This wasn’t mere infrastructural deployment; it was the birth of an entirely new vocational realm. Here was a circular philosophy at play: knowledge and skills didn’t just arrive; they stayed, grew, and prospered.

A Financial Masterstroke

Financing such an ambitious venture was no small feat. Traditional models, often myopic in their vision, failed to grasp the intricacies of rural African electrification. But Akon and his team sketched a different blueprint.

With a deft mix of public and private alliances, they channeled investments from entities passionate about genuine societal impact. This wasn’t just about monetary gains; it was about dividends in human progress. The strategy cultivated sustainable growth without saddling nations with crushing debt.

In Akon’s journey, we glimpse more than just benevolence. It’s a masterclass in synergy, in uniting profit with purpose, leveraging sustainable avenues, and bestowing power upon local communities. It’s a circular dance of progress where every step forward is a leap for an entire community.

From the rhythm of his melodies, Akon once moved the world. Today, through the hum of countless electrified villages, he’s rewiring the continent’s future. One panel, one village, one heartbeat at a time.

The Lighthouse Effect and Africa’s Renaissance

Akon’s ambitious endeavor to illuminate the heart of Africa wasn’t just a testament to his commitment to his roots, but it became a beacon for many African celebrities and influencers who had made their name on international shores.

His journey began a ripple effect, sparking a reverse brain drain and an emergent African identity that champions global knowledge but with deeply rooted African solutions.

The Reverse Brain Drain

Historically, many of Africa’s best and brightest pursued opportunities abroad due to limited resources and infrastructural challenges at home. This led to a “brain drain,” where talent flocked to Western countries. However, Akon’s investment in Africa’s potential has ignited a trend that defies this narrative.

Returning Talent

Following Akon’s steps, several prominent personalities like Didier Drogba, the famed Ivorian footballer, established charitable foundations. Drogba’s foundation, in particular, has been involved in various health and education initiatives in Côte d’Ivoire. The success stories of these initiatives began attracting Africans abroad to consider returning home, leveraging their global experiences and network to make a difference.

Skills and Expertise

The returnees brought more than just capital. They brought with them skills, experiences, and insights from some of the world’s best institutions and companies. They began setting up enterprises, tech hubs, and initiatives in fields ranging from renewable energy to digital innovation and education.

Collaborative Initiatives

Akon’s venture prompted collaboration. Nigerian actress Genevieve Nnaji, for instance, used her platform to emphasize the importance of education and has actively participated in projects aimed at building schools in rural regions. Her collaboration with other returnees and foreign institutions is a testament to the synergies now taking root in Africa.

Crafting a New African Identity

Akon’s initiative has not only been about electrifying homes but also about reigniting pride in African identity.

Homegrown Solutions

This renewed identity champions the philosophy of “For Africa, By Africa.” Instead of wholly importing foreign solutions, there’s a significant emphasis on tailoring interventions to the unique challenges and strengths of African societies.

Cultural Renaissance

Alongside infrastructural developments, there’s been a palpable rejuvenation of African arts, music, literature, and cinema. Stars like Lupita Nyong’o and Chimamanda Ngozi Adichie are leveraging their global platforms to bring attention back to Africa, advocating for an appreciation of its rich traditions and potential.

Economic Paradigms

Africa is now being seen not just as a beneficiary of aid but as an equal partner in global economic dynamics. Akon’s foray into cryptocurrency with the launch of “Akoin” in Senegal is a prime example. This venture further emphasizes his vision of an economically self-reliant Africa, leveraging modern technological tools.

In essence, Akon’s electrification project has been much more than a philanthropic endeavor. It has lit the way for a generation of African influencers, beckoning them back to their roots, not out of obligation but opportunity.

With every village that lights up, it’s not just the darkness that’s kept at bay but also the shadows of outdated narratives. Akon and his league of influencers are championing a new story for Africa, one that blends its rich legacy with a luminous vision for the future.


Akon: An Odyssey of Light and Empowerment was originally published in Helpful Engineering on Medium, where people are continuing the conversation by highlighting and responding to this story.

Scaling the Skies: Navigating the Highs and Lows of Urban Vertical Farming

Photo by Nadine Primeau on Unsplash

In the heart of bustling cities with desert horizons, where skyscrapers cast long shadows and space is a premium, a new silhouette is emerging — vertical farms. These towering havens of greenery promise fresh produce even in the densest urban centers. Yet, with their rise come challenges: space constraints, soaring energy demands, hefty initial investments, and intricate upkeep. However, as innovators are proving, every problem has a solution. Let’s traverse the stacked aisles of urban vertical farming.

Tilling the Concrete Jungle

The dream is seductive: converting urban spaces into productivity hubs, reducing food miles, and offering city dwellers a literal taste of the farm. However, dreams often grapple with reality:

Space Constraints: While vertical farming minimizes horizontal space use, urban centers, especially in desert countries, offer limited space due to high property values.

Energy Appetite: Traditional farming thrives on sunlight. Vertical farms, however, often rely heavily on energy-intensive artificial lighting, especially in regions with prolonged hot and sun-scarce periods.

Capital Challenges: Setting up a vertical farm isn’t cheap. From specialized lighting to hydroponic systems, the initial costs can be daunting.

Maintenance Maze: These farms aren’t just about sowing and reaping; they’re complex systems requiring consistent monitoring and adjustments.

Innovating Upwards: Modular & Energy-Efficient Solutions

What if the challenges of space and energy could be turned into strengths?

Modular Systems: Think of them as Lego blocks for farmers. Customizable, expandable, and versatile, they can be fitted into various urban spaces, from rooftops to balconies to abandoned warehouses.

Tapping Renewable Energy: Solar panels or wind turbines can be integrated to harness natural energy. In sun-rich desert countries, this could counterbalance energy consumption.

Optimized Lighting: Advanced LED lights, tailored to emit specific wavelengths, can promote faster plant growth with less energy.

Smart Systems: Automated sensors and AI-driven analytics can reduce the need for constant human monitoring, optimizing conditions for plant growth while conserving resources.

Case Study: The Oasis Towers of Dubai

Dubai, with its sprawling skyscrapers and desert backdrop, epitomizes space and environmental challenges. Enter the Oasis Towers: a series of vertical farms powered entirely by solar panels, taking modularity to new heights. Designed as self-sufficient units, each module can be tailored to specific crops. The result? A 70% reduction in water usage and a significant drop in energy costs, producing yields comparable to larger traditional farms.

Cost-Effective and User-Friendly: Democratizing Vertical Farming

High-tech farming solutions can seem out of reach for small-scale urban farmers and community gardens. Yet, the future holds promise:

Shared Farming Spaces: Think co-working spaces, but for farmers. Shared facilities can spread out the costs, making the technology accessible to many.

Training and Support: Local governments and NGOs can offer training sessions, ensuring farmers reap the most from these systems.

Local Manufacturing: Producing components locally, especially in warm or desert countries, can reduce costs.

Simplified Systems for Community Gardens: Stripping down advanced systems to their essentials can provide community gardens with affordable vertical farming solutions.

Case Study: Lima’s Urban Green Revolution

Lima, with its warm climate, has seen community gardens sprout throughout the city. Faced with space constraints, locals innovated with cost-effective vertical solutions. Using locally sourced materials, combined with basic hydroponic systems and shared LED setups, yields have flourished. These community-driven initiatives not only feed neighbourhoods but also foster community ties and engagement.

Conclusion

Vertical farming, with its verdant towers and digital dashboards, offers more than just fresh produce; it paints a vision of a sustainable, resilient urban future. Warm and desert countries, often at the frontlines of climate change, stand to gain immensely from this agricultural renaissance.

Yet, the transition demands more than just technology; it requires a blend of innovation, community engagement, and a dash of audacity. As city skylines evolve, integrating green into the gray, vertical farming stands not as a mere trend but as a testament to human ingenuity in the face of challenges. From Lima’s community gardens to Dubai’s Oasis Towers, the future of farming is not just on the horizon, but reaching for the skies.


Scaling the Skies: Navigating the Highs and Lows of Urban Vertical Farming was originally published in Helpful Engineering on Medium, where people are continuing the conversation by highlighting and responding to this story.